Monte Carlo Modeling of Ion Beam Induced Secondary Electrons
نویسندگان
چکیده
منابع مشابه
Monte Carlo modeling of ion beam induced secondary electrons.
Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE δ) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements a...
متن کاملDirect simulation Monte Carlo modeling of e-beam metal deposition
Three-dimensional direct simulation Monte Carlo ͑DSMC͒ method is applied here to model the electron-beam physical vapor deposition of copper thin films. Various molecular models for copper-copper interactions have been considered and a suitable molecular model has been determined based on comparisons of dimensional mass fluxes obtained from simulations and previous experiments. The variable hard ...
متن کاملMonte Carlo study on beam hardening effect of physical wedges
Background: Physical wedges are still widely used as beam modifiers in external beam radiotherapy. However the presence of them in the beam trace may cause beam hardening which may not be considered in many treatment planning systems. The aim of this study is to investigate the beam hardening effect generated by physical wedges via different beam quality indexes as photon spectrum, half value l...
متن کاملEvaluation of dose distribution of 12C ion beam in radiotherapy by FLUKA as a Monte Carlo simulation Code
Introduction: Nowadays, the use of heavy ion beams in cancer therapy have been developed worldwide. Materials and Methods: It requires accurate understanding of the complex processes of ion interaction with matter, as it is the calculation the relative dose & range of these ions in matter. In the present study we used FLUKA as a numerical Monte Carlo simula...
متن کاملC beam: Monte Carlo simulations and experiment
Charge particle therapy with 12 C ions has the advantage of an enhancement in physical dose distribution due to the Bragg Peak (BP) related to higher Relative Biological Effectiveness (RBE) with respect to X-ray radiotherapy and proton therapy (2.5 for 12 C ions and 1.1 for protons) [1], [2]. The RBE of a 12 C therapeutic beam changes dramatically with depth, especially towards the end of the S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microscopy and Microanalysis
سال: 2014
ISSN: 1431-9276,1435-8115
DOI: 10.1017/s1431927614003237